Arithmetical rank of squarefree monomial ideals of small arithmetic degree

نویسندگان

  • Kyouko Kimura
  • Naoki Terai
  • Ken-ichi Yoshida
چکیده

In this paper, we prove that the arithmetical rank of a squarefree monomial ideal I is equal to the projective dimension of R/I in the following cases: (a) I is an almost complete intersection; (b) arithdeg I = reg I ; (c) arithdeg I = indeg I + 1. We also classify all almost complete intersection squarefree monomial ideals in terms of hypergraphs, and use this classification in the proof in case (c).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schmitt–Vogel type lemma for reductions

The lemma given by Schmitt and Vogel is an important tool in the study of the arithmetical rank of squarefree monomial ideals. In this paper, we give a Schmitt–Vogel type lemma for reductions as an analogous result. Mathematics Subject Classification (2010). 13A30.

متن کامل

The Monomial Ideal of a Finite Meet-semilattice

Squarefree monomial ideals arising from finite meet-semilattices and their free resolutions are studied. For the squarefree monomial ideals corresponding to poset ideals in a distributive lattice the Alexander dual is computed.

متن کامل

Specializations of Ferrers ideals

We introduce a specialization technique in order to study monomial ideals that are generated in degree two by using our earlier results about Ferrers ideals. It allows us to describe explicitly a cellular minimal free resolution of various ideals including any strongly stable and any squarefree strongly stable ideal whose minimal generators have degree two. In particular, this shows that thresh...

متن کامل

Monomial Ideals Arising from Distributive Lattices

The free resolution and the Alexander dual of squarefree monomial ideals associated with certain subsets of distributive lattices are studied.

متن کامل

On ideals generated by monomials and one binomial

We determine, in a polynomial ring over a field, the arithmetical rank of certain ideals generated by a set of monomials and one binomial.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009